Monday, August 08, 2016

CP Violation in Neutrino Oscillation

It is always nice when non-science media carries physics news. Unfortunately, often times, the accuracy is lacking and, in many cases, gives misleading ideas. This is one such case.

It is reporting on the news about CP violation in neutrino oscillation from muon neutrinos and muon antineutrinos that was reported in last week's 2016 ICHEP.

At the T2K experiment, researchers looked for a difference between neutrinos and antineutrinos oscillations. Their findings, announced at the International Conference on High Energy Physics in Chicago, suggest that there are — more muon neutrinos were found changing into electron neutrinos than muon antineutrinos changing into electron antineutrinos.

The researchers, who had expected to detect 23 electron neutrinos and seven electron antineutrinos, observed 32 electron neutrinos and 4 electron antineutrinos.
.
.
.

If confirmed with a greater level of certainty, this would point to a violation of charge-parity (CP) symmetry in neutrinos. CP symmetry tells us that a system remains unchanged even if two fundamental properties — charge and parity, which refers to a 180-degree flip in spatial configuration — are reversed. If a violation of CP symmetry is confirmed, it would not only hint at the existence of physics beyond the Standard Model — a theory of almost everything — it would also help us understand why the universe is completely devoid of antimatter.

There's nothing wrong with the report. However, it is inaccurate with regards to what it left out. If you don't know any better, you'd think that this is something new, and that this is the first instance of CP violation. This is not true. CP violation has been seen in other particle systems. So there is no longer a question on whether such violation exists. What is new here is that it is the first time it is observed in neutrino oscillation.

This is why science reporting is difficult. You need someone who has a wide breadth of knowledge in many fields to be able to not only report things accurately, but also give a full view of it. There's nothing inaccurate here in what was included. But the inaccuracy occurs on what was omitted, and therefore, not giving a general reader a more complete state of knowledge of the field.

Zz.

No comments: